Team 2Final Project PresentationSync3D: Single Image Novel View Synthesis via Diffusion
Syncing in 3D Space

Asiman Ziyaddinov, Jinhyuk Jang, Prin Phunyaphibarn

3D Reconstruction (NeRF, 3DGS)

Pros:

- + Simple representation
- + High-Quality Output

Cons:

- Dependent on quality of views
- Typically requires dense views

How can we generate novel views from a single RGB image?

Existing Paradigms in Novel View Synthesis

- 1. 3D Reconstruction (e.g., NeRF, SinNeRF):
- Encodes scene geometry in a volumetric representation.
- Requires multi-view input or accurate depth maps.

- 2. Generative Priors (e.g., Zero-1-to-3):
- Learns view synthesis directly from large-scale datasets.
- Outputs are visually compelling but not guaranteed geometrically accurate.

SinNeRF: Training Neural Radiance Fields from a Single Image (ECCV 2022)

Strengths:

+ Enables view-consistent 3D scene reconstruction from single image.

Weaknesses:

- Produces blurry artifacts and broken geometry
- Requires additional cues like accurate depth maps.

TL;DR: Given only a single reference view as input, our novel semi-supervised framework trains a neural radiance field effectively. In contrast, previous method shows inconsistent geometry when synthesizing novel views.

Zero-1-to-3: Zero-shot One Image to 3D Object (ICCV 2023)

Single-image Novel View Synthesis

Strengths:

- + Data Efficiency
- + Versatile Applications
- + High-Quality Output

Weaknesses:

- Inconsistent Detail
- Dependence on Pre-trained Models

Single Image Novel View Synthesis: 3D Reconstruction vs. Generative Priors

3D Reconstruction

Pros

(Pre)training-free

multi-view consistent

Cons

Produces blurry artifacts (low quality)

Requires additional information (e.g. depth)

Generative Priors ros				
Pros				
<u>High quality</u>				
Generalizes to unseen views				
Cons				
multi-view inconsistent				
does not generalize outside training distribution				

Combining 3D Representations with Diffusion Priors

Generate novel views using diffusion priors

Enforce multiview consistency by guiding the diffusion process using a unified 3D representation

Recap: Diffusion models progressively denoise an image

Algorithm 1 Diffusion Sampling (DDIM)

- 1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, I)$ 2: for $t = T, \dots, 1$ do 3: $x_{0|t} = \frac{1}{\sqrt{\alpha_t}} \left(x_t - \sqrt{1 - \bar{\alpha}_t} \epsilon_{\theta}(x_t) \right)$ 4: $x_{t-1} = \sqrt{\bar{\alpha}_{t-1}} x_{0|t} + \sqrt{1 - \bar{\alpha}_{t-1}} \epsilon_{\theta}(x_t)$ 5: end for
- 6: return x_0

Song, Jiaming, Chenlin Meng, and Stefano Ermon. "Denoising Diffusion Implicit Models." International Conference on Learning Representations.

Recap: Diffusion models progressively denoise an image

Algorithm 1 Diffusion Sampling (DDIM)

1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, I)$ 2: for $t = T, \dots, 1$ do 3: $x_{0|t} = \frac{1}{\sqrt{\alpha_t}} \left(x_t - \sqrt{1 - \overline{\alpha_t}} \epsilon_{\theta}(x_t) \right)$ 4: $x_{t-1} = \sqrt{\overline{\alpha_{t-1}}} x_{0|t} + \sqrt{1 - \overline{\alpha_{t-1}}} \epsilon_{\theta}(x_t)$

How can we guide the diffusion process during the denoising phase?

5: end for

6: return x_0

Song, Jiaming, Chenlin Meng, and Stefano Ermon. "Denoising Diffusion Implicit Models." International Conference on Learning Representations.

The Diffusion Process can be guided using the gradient of a loss function

Inject Guidance

 \mathcal{X}_t

Bansal, Arpit, et al. "Universal guidance for diffusion models." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023.

1. Compute Tweedies:
$$x_{0|t} = \frac{1}{\bar{\alpha}_t} \left(x_t - \sqrt{1 - \bar{\alpha}_t} \epsilon_{\theta}(x_t) \right)$$

2. Update noisy sample using backpropagation:

$$\tilde{x}_t = x_t - \eta \nabla_{x_t} \ell(x_0)$$

3. Denoise the updated sample

1. Compute Tweedies:
$$x_{0|t} = \frac{1}{\bar{\alpha}_t} \left(x_t - \sqrt{1 - \bar{\alpha}_t} \epsilon_{\theta}(x_t) \right)$$

Problem: Gradients with respect to x, is unstable

2. Update noisy sample using backpropagation:

$$\tilde{x}_t = x_t - \eta \nabla_{x_t} \ell(x_0)$$

3. Denoise the updated sample

1. Compute Tweedies:
$$x_{0|t} = \frac{1}{\bar{\alpha}_t} \left(x_t - \sqrt{1 - \bar{\alpha}_t} \epsilon_{\theta}(x_t) \right)$$

2. Update noisy sample using backpropagation: Solution: Take gradients w.r.t x_{olt}

$$\tilde{x}_t = x_t - \eta \nabla_{x_{0|t}} \ell(x_0)$$

3. Denoise the updated sample

Ye, Haotian, et al. "TFG: Unified Training-Free Guidance for Diffusion Models." The Thirty-eighth Annual Conference on Neural Information Processing Systems.

Algorithm 2 Diffusion Guidance 1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, I)$ 2: for t = T, ..., 1 do $x_{0|t} = \frac{1}{\sqrt{\alpha_t}} \left(x_t - \sqrt{1 - \bar{\alpha}_t} \epsilon_\theta(x_t) \right)$ 3: 4: $\tilde{x}_t = x_t - \eta \nabla_{x_{0|t}} \ell(x_0)$ 5: $\tilde{x}_{0|t} = \frac{1}{\sqrt{\alpha_t}} \left(\tilde{x}_t - \sqrt{1 - \bar{\alpha}_t} \epsilon_{\theta}(\tilde{x}_t) \right)$ $x_{t-1} = \sqrt{\bar{\alpha}_{t-1}}\tilde{x}_{0|t} + \sqrt{1 - \bar{\alpha}_{t-1}}\epsilon_{\theta}(\tilde{x}_t)$ 6: 7: end for 8: return \mathbf{x}_0

Algorithm 2 Diffusion Guidance 1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, I)$ 2: for t = T, ..., 1 do $x_{0|t} = \frac{1}{\sqrt{\alpha_t}} \left(x_t - \sqrt{1 - \bar{\alpha}_t} \epsilon_\theta(x_t) \right)$ 3: But what loss 4: $\tilde{x}_t = x_t - \eta \nabla_{x_{0|t}} \ell(x_0)$ do we use? 5: $\tilde{x}_{0|t} = \frac{1}{\sqrt{\alpha_t}} \left(\tilde{x}_t - \sqrt{1 - \bar{\alpha}_t} \epsilon_{\theta}(\tilde{x}_t) \right)$ $x_{t-1} = \sqrt{\bar{\alpha}_{t-1}}\tilde{x}_{0|t} + \sqrt{1 - \bar{\alpha}_{t-1}}\epsilon_{\theta}(\tilde{x}_t)$ 6: 7: end for 8: return \mathbf{x}_0

Designing the View-Consistency Loss: Incorporating 3D Priors

MVDREAM: Multi-view Diffusion for 3D Generation

multi-view images at four orthogonal angles at a fixed elevation

3D model

Rendered images

Multi-view Diffusion UNet

Shi, Yichun, et al. "MVDream: Multi-View Diffusion for 3D Generation." *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2024

LGM: Large Multi-View Gaussian Model for High-Resolution 3D Content Creation

4 sets of Gaussians predicted by U-Net Multi-view images by **MVDream** Differentiable ResBlock ResBlock rendering Cross-view Self-Attention Skip Connection ... 2 Multi-view Camera Ray Fused Multi-view Novel View Asymmetric U-Net Images Embeddings **Gaussian Features** Gaussians Supervision

Jiaxiang Tang, et al. "LGM: Large Multi-View Gaussian Model for High-Resolution 3D Content Creation", 2024

LGM: Large Multi-View Gaussian Model for High-Resolution 3D Content Creation

Diffusion Guidance via Pseudo Ground Truth Views

Generate Pseudo Ground Truth Views using LGM

Pseudo-GT

Semantic Guidance

Using MSE captures too many high-level details (LGM produces blurry views)

Use LPIPS to capture low-level structure

Geometric Guidance

Figure from Shi, Ruoxi, et al. "Zero123++: a single image to consistent multi-view diffusion base model." arXiv preprint arXiv:2310.15110 (2023).

Putting it Together

Semantic Guidance (LPIPS) x x₀

MVDream vs. Our Method

MVDream produces **fixed** views Our method can generate views from **arbitrary** camera positions/orientation

Experimental Results

Quantitative Results

We evaluate using **Google Scanned Objects** dataset (>1000 scanned objects).

We report the average LPIPS, PSNR, and SSIM of 6 rendered views per object.

Method	LPIPS ↓	PSNR ↑	SSIM ↑
Zero-1-to-3	0.211	16.037	<u>0.824</u>
LGM	0.273	14.717	0.819
Ours (w/o UNet Gradients) +LPIPS Guidance	<u>0.199</u>	16.403	0.816
Ours (w/o UNet Gradients) +LPIPS Guidance +Depth Guidance	0.198	<u>16.397</u>	0.830

Downs, Laura, et al. "Google scanned objects: A high-quality dataset of 3d scanned household items." 2022 International Conference on Robotics and Automation (ICRA). IEEE, 2022.

Ablation Study: UNet Gradients

Method	LPIPS ↓	PSNR ↑	SSIM ↑
Ours (w/o UNet Gradients) +LPIPS Guidance	0.199	16.403	0.816
Ours (w/ UNet Gradients) +LPIPS Guidance	0.202	16.316	0.827
Ours (w/o UNet Gradients) +LPIPS Guidance +Depth Guidance	0.198	16.397	0.830
Ours (w/ UNet Gradients) +LPIPS Guidance +Depth Guidance	0.199	16.370	0.829

Ablation Study: LPIPS vs MSE Guidance

Method	LPIPS ↓	PSNR ↑	SSIM ↑
Ours (w/o UNet Gradients) +LPIPS Guidance	0.199	16.403	0.816
Ours (w/o UNet Gradients) + MSE Guidance	0.206	16.225	0.827

Qualitative Results

Improves consistency

Reduces hallucination artifacts and improves consistency

Improves view-alignment

Conclusion

We leverage LGM to produce a unified 3D representation which we use to generate pseudo ground truth views to guide the diffusion process via semantic and depth guidance to achieve high-quality multiview-consistent generations.

Limitations

- Diffusion guidance take more time (~1 min. per 6 views)
- More memory intensive-need to load 3 models
- Dependent on quality of LGM and MVDream

Contributions

Prin: Zero-1-to-3 pipeline, LPIPS guidance, and evaluation code

Jinhyuk: Integrate 3D reconstruction (LGM) into the pipeline

Asiman: Depth prediction and depth guidance